

NGSを利用したキャリアスクリーニング

フィルジェン株式会社 バイオインフォマティクス部 (biosupport@filgen.jp)

- 妊娠前のカップルに対してキャリアスクリーニングを実施することで、 子どもの遺伝性疾患の発症リスクを予測することができます。
- Golden Helix社VarSeq[®]ソフトウェアでは、次世代シークエン サーより得られたバリアントデータをもとに、ACMGガイドラインに基 づいた遺伝性疾患の病的バリアントの検出とリスク計算、レポート 出力を行うことができます。

VarSeg[®]

	Anno	tatio	n		Variant Filtering					
Trio Analysis Trio Analysis	× \ + iis : ;] ind (NA12878) [+]	Xkc	C LipAdd I	enomeBrowse 2	I), AI	×\+	* 16: 2,495,	457 - 2,495,535	14	
o Analysis	2,143	690					_			
Compound Het	0.7	20	4 1	6: 2,495,470	16: 2,4	195,490	16: 2,4	495,510	16: 2,495,530	
Proband Genoty Proband Read C	pe Quality o [] 581,551 Pepth o []	Reference	e Sequence GRCH	17 g1k, 1000Genome Chick Color Color					User Annotations and Calcic Contrology	
	113,599		Genes 105 NCPI						Parine and a second sec	
NHLBI ESP6500	ALMAF 0 0 68,880	Hended (CCNF	LIDW	LVEV	ATM	K D F 1	TSLCL	HLTVE	
E Sequence Ontok	997 0 D		IY I	LIDW	LVEV	ATM	KDF1	TSLCL	HLTVE	
	5,932		mes 2010-10-27, UC	sc					User Annotations and	
¿ Compound Het (Proband) O III					600227	0			
Essential Gene	00									
	14	Variants	- NA12878		(track)			20	Project BE	
		NALZO	18-		0			8. juli		
	14	NA128	91-		T/G-{		C/A-G	8		
-		36 NA128	92-		0					
(36 Variant	ts) Trio Analysis	×\II	(30,161 Genes) ×	+			Detail	× \ +	
🖗 🔹 🗹 Trio /	Analysis	æ.	12. 20.	Addy	Show		Variants: 36	History	Copy Cle	
Varian	t Sites		Genotypes		Classification	Compound Het	ariants	16:2495482 - T/G		
Chr.Pos	Ref/Alt Identifier	Proband (NA12878)	Mother (NA12891)	Father (NA12892)	Sequence Ontology	is CH? In	herited From	Variant Sites		
1:108183167	A/G rs659243	G_G	c_c	c_c	missense_variant	False	NA	Chr:Pos	16:2495482	
13:49033835	G/A rs20211	A_G	A_G	A_G	missense_variant	False	NA	Rel/Alt	T/G	
4:24567498	A/C rs30211	c_c	C_C	c_c	missense_variant	False	NA	Identifier	r\$201540325	
4-73664751	T/G rs19972	G_T	G_T	G_T	missense_variant	False	NA	Reference	т	
	CIT #11631	G T	1.1	IJ	missense_variant	False	NA	Alternates	G	
4:105208082	G/1 1511021				melaning and the second	Tana	Frahres			

Genome Browser

Data Analysis

- 様々なデータベースを用いて、バリアントデータ(VCFファイル) ヘアノテーション 付けを実行
 - RefSeq Genes Orphanet
 - dbSNP BRCA Exchange

PMKB

- ClinVar
 - dbNSFP • REVEL
- CIViC
- ICGC / TCGA CADD
- MSK Impact

• OMIM

- 1000 Genomes
- NHLBI 6500 Exomes
- ExAC Variant
- gnomAD Exomes/Genomes
- GenomeAsia 100K
- •各種遺伝子パネルのターゲットデータなど
- アノテーション付けされたバリアントデータより、任意の検索条件でデータのフィル タリングを行うワークフローを作成
- カバレッジ計算やトリオ解析、表現型情報に基づく遺伝子ランキングなどの解析アルゴリズムを搭載
- ゲノムブラウザーにより、サンプルのバリアントデータやリードアライメントデータ (BAM/CRAMファイル)、また各種アノテーションを可視化
- 有償アドオンによる機能拡張で、CNV検出や臨床的意義の自動評価、パイ プライン機能などが利用可能

VSClinical

Drug S	Sensitivity Interpretations (6) Drug	Resistance Interpretations (2)	Drug Descriptions		
~	Drugs	Tier	Saved For	Variants	Clinical Trial
	Bevacizumab, Ramucirumab, Regorafenib	Tier 1A	Colorectal Adenocarcinoma	Unspecified	0 Selecte
~	Encorafenib + Cetuximab, Encorafenib + Panitumumab	Tier 1A	Colorectal Adenocarcinoma	BRAF V600E (Activating Mutation)	0 Selecte
~	Entrectinib, Larotrectinib	Tier 1A	Solid Tumor Cancers	NTRK1 Fusion (Activating Mutation)	0 Selecter
~	Pembrolizumab	Tier 1A	Solid Tumor Cancers	TMB High	0 Selecte
~	Dostarlimab-gxly, Nivolumab, Nivolumab + Ipilimumab, Pembrolizumab	Tier 1A	Colorectal Adenocarcinoma	MSI High	0 Selecte
			< 1 of 2 >		

VSClinical ACMG Guideline

- メンデル遺伝病における生殖細胞系列バリアントを、ACMG ガイドラインの評価基準に基づいて分類し、病原性 (Pathogenic)や良性(Benign)の判定を行う
- 専用の分類用ツールを実行することで、VCFファイルに含まれ る全バリアントに対して一括で評価を行い、評価結果に基づ きバリアントのフィルタリングが可能

VSClinical AMP Guideline

- 各種バイオマーカー (SNV, InDels, CNV, 融合遺伝子, TMB/MSIなど)をAMPガイドラインのエビデンスレベルで分類 し、がんの治療薬や臨床試験情報を含めたレポートを作成
- 主要ながんにおけるバイオマーカー情報などを収録した、専用の知識ベースGolden Helix CancerKBが利用可能

データ解析の手順

Filgen®

VCFファイルのインポート	✓ 夫婦またはカップルのVCFファイルをインポート
キャリアバリアントの抽出	 ✓ 常染色体劣性、またはX連鎖性疾患の病的 バリアントの抽出 ✓ ACMGキャリアスクリーニングパネル搭載の遺伝 子の絞り込み
バリアントの病原性評価	✓ ACMGガイドラインに基づいたバリアントの病原 性評価
レポート作成	✓ サンプル情報、バリアント情報、さらにバリアント と関連する遺伝性疾患の子どもの発症リスクが 記載されたレポートを出力

VCFファイルのインポート

			Import Variants	s Wizard	es							- U X					
VC	ĴF		 Define Inpu Scan Input Change O 	ut pptions	Sample Relation) Individual Sample Add sample fields: From	ships s m Text Fil	O Family Sample: Associate Alignmer	s O	Tumor/Normal Sa ual Field	imples 💿 Pa	artnered	Samples					
			④ Review		Original Samples	5	Samples	Status	Partner	Sex		File Basename					
	\Box	4	Select the sample	es of] 1 SAMPLE1	SAMP	LE1	Primary	SAMPLE2 ~	Female	Samp	le1					
			adjust their attrib	opriately outes	2 SAMPLE2	SAMP	LE2	Partner	SAMPLE1 ~	Male	Samp	le2					
ants: 255.021 3	× 🔲 Var	iant Genes: 13	.092 × 🥅	Samples:	2 × +									7	CVCFフ	アイルを	をつ
iants: 255,021	× 🔲 Var	iant Genes: 13	092 × 🗖	Samples:	2 × + Filter Variants Inp	out: SA	MPLE1 T a							7	CVCFフ	アイルを	をイン
iants: 255,021 Varia	× Tor Var	iant Genes: 13	1,092 ×/ 🗔 O. 📑 🕻	Samples:	2 × + Filter Variants Inp SAMPLE1	out: SA	MPLE 1 - P		Partne	r (SAMPLE	2)			(CVCFJ	アイルを	をイン
iants: 255,021 Varia ^ Chr:Pos	X Var	iant Genes: 19	0,092 × 🗊 O. 🕞 🕻	Samples:	2 × + Filter Variants Inp SAMPLE1 GQ	out: SA GT	MPLE1 T IP Zygosity	VAF	Partne AD	r (SAMPLE GQ	:2) GT	Zygosity		(CVCFJ	アイルを	をイン
iants: 255,021 Varia Chr:Pos 1:16487	× T/C	iant Genes: 18	092 × 🔲 C. 🔂 C VAF 0.280702	Samples: AD 41,16	2 × + Filter Variants Inp SAMPLE1 GQ 99	out: SA GT 0/1	MPLE 1 T P Zygosity Heterozygous	VAF ?	Partne AD ?,?	r (SAMPLE GQ ?	2) GT ./.	Zygosity ?		(CVCFJ	アイルを	をイン
iants: 255,021 Varia Chr:Pos 1:16487 1:16495	× Var Var ant Info Ref/Alt T/C G/C	iant Genes: 19	092 × 100 VAF 0.280702 0.464286	Samples: AD 41,16 30,26	2 × + Filter Variants Inp SAMPLE1 GQ 99 99	GT 0/1 0/1	MPLE1 T Zygosity Heterozygous Heterozygous	VAF ? 0.48	Partne AD ?,? 26,24	r (SAMPLE GQ ? 99	(2) GT ./. 0/1	Zygosity ? Heterozygous		7	CVCFJ	アイルを	をイン
iants: 255,021 Varia Chr:Pos 1:16487 1:16495 1:16534	X Var	iant Genes: 18	0,092 × T	Samples: AD 41,16 30,26 44,11	2 × + Filter Variants Inp SAMPLE1 GQ 99 99 99	GT 0/1 0/1 0/1	MPLE1 T Zygosity Heterozygous Heterozygous Heterozygous	VAF ? 0.48 ?	Partne AD ?,? 26,24 ?,?	r (SAMPLE GQ ? 99 ?	2) GT ./. 0/1 ./.	Zygosity ? Heterozygous ?		(CVCFJ	アイルを	をイン
iants: 255,021 Varia Chr:Pos 1:16487 1:16495 1:16534 1:16949	X Var Var ant Info Ref/Alt T/C G/C C/T A/C	iant Genes: 15 O Identifier ? ? ? ? ?	092 × 100 VAF 0.280702 0.464286 0.2 ? 0.101605	Samples: AD 41,16 30,26 44,11 ?,?	2 × + Filter Variants Inp GQ 99 99 99 99 ?	GT 0/1 0/1 ./.	MPLE1 T Zygosity Heterozygous Heterozygous Heterozygous Zygoszawa	VAF ? 0.48 ? 0.305085	Partne AD ?,? 26,24 ?,? 41,18	r (SAMPLE GQ ? 99 ? 99	GT ./. 0/1 ./. 0/1 0/1	Zygosity ? Heterozygous ? Heterozygous	-	7	CVCFJ	アイルを	をイン
iants: 255,021	X Var	iant Genes: 18 Identifier ? ? ? ? ? ? ? ? ? ? ? ?	0,092 × 10 VAF 0,280702 0,464286 0,2 ? 0,101695 0,136364	Samples: AD 41,16 30,26 44,11 ?,? 53,6 57,9	2 × + Filter Variants Inp SAMPLE1 GQ 99 99 99 99 99 99 99 99 99 9	GT 0/1 0/1 0/1 ./. 0 1	MPLE1 Trend Constraints Zygosity Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous	VAF ? 0.48 ? 0.305085 0.114286 0.101449	Partne AD ?,? 26,24 ?,? 41,18 62,8 62,7	r (SAMPLE GQ ? 99 ? 99 99 99	2) GT ./. 0/1 ./. 0/1 0/1 0 1	Zygosity ? Heterozygous ? Heterozygous Heterozygous	•	7	CVCFJ	アイルを	をイン
iants: 255,021	× Var	iant Genes: 18 Control Control Contro	092 × 100 VAF 0.280702 0.464286 0.2 0.101695 0.136364 0.166667	Samples: AD 41,16 30,26 44,11 ?,? 53,6 57,9 60,12	2 × + Filter Variants Inp GQ 99 99 99 99 99 99 99 99 99	GT 0/1 0/1 0/1 ./. 0 1 0 1 0/1	MPLE1 T P Zygosity Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous	VAF ? 0.48 ? 0.305085 0.114286 0.101449 0.202899	Partne AD ?,? 26,24 ?,? 41,18 62,8 62,7 55,14	r (SAMPLE GQ ? 999 ? 999 999 999	2) GT ./. 0/1 ./. 0/1 0 1 0 1 0/1	Zygosity ? Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous	•	7	CVCFJ	アイルを	をイン
iants: 255,021	X Var ant Info Ref/Alt T/C G/C C/T A/C G/A G/A G/A G/A G/A	iant Genes: 18 Identifier ? ? ? ? ? ? ? ? ? ? ? ? ?	0,092 × 100 VAF 0.280702 0.464286 0.2 0.101695 0.136364 0.166667 0.287879	Samples: AD 41,16 30,26 44,11 ?,? 53,6 57,9 60,12 47,19	2 × + Filter Variants Inp SAMPLE1 GQ 99 99 99 99 99 99 99 99 99	GT 0/1 0/1 0/1 ./. 0 1 0 1 0/1 0/1	MPLE1 Tr Zygosity Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous	VAF ? 0.48 ? 0.305085 0.114286 0.101449 0.202899 0.125	Partne AD ?,? 26,24 ?,? 41,18 62,8 62,7 55,14 63,9	r (SAMPLE GQ ? 99 ? 99 99 99 99 99 61	2) GT ./. 0/1 ./. 0/1 0 1 0 1 0/1 0/1	Zygosity ? Heterozygous ? Heterozygous Heterozygous Heterozygous Heterozygous		7	CVCFJ	アイルを	をイン
iants: 255,021	X Var Ant Info Ref/Alt T/C G/C C/T A/C G/A G/A G/A G/A G/A G/A	iant Genes: 18 Control Control Contro	092 × 100 VAF 0.280702 0.464286 0.2 0.101695 0.136364 0.166667 0.287879 ?	Samples: AD 41,16 30,26 44,11 ?,? 53,6 57,9 60,12 47,19 ?,?	2 × + Filter Variants Inp GQ 99 99 99 99 99 99 99 99 99 99 99 99 99	GT 0/1 0/1 0/1 ./. 0 1 0 1 0/1 0/1 ./.	MPLE1 T T Zygosity Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous	VAF ? 0.48 ? 0.305085 0.114286 0.101449 0.202899 0.125 0.140351	Partne AD ?,? 26,24 ?,? 41,18 62,8 62,7 55,14 63,9 49,8	r (SAMPLE GQ ? 999 999 999 999 61 55	2) GT ./. 0/1 ./. 0/1 0/1 0/1 0/1 0/1 0/1	Zygosity ? Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous Heterozygous		7	CVCFJ	アイルを	ድብጋ

キャリアスクリーニング用ワークフロー

Couples Carrier Screening Template

- カップルのサンプルデータを使用して、遺 伝性疾患と関連する病的バリアントを 絞り込むためのワークフロー
- ACMGキャリアスクリーニングパネル搭載 の遺伝子を対象に、ClinVarまたは ACMGガイドラインで病的と判定された バリアントを自動で検出
- 両方のサンプルで病的バリアントが検出 された遺伝子の同定も可能

🗹 🖬 Filter Variants	n 🔧 255,	02
Autosomal Recessive and X-Linked Variants	🔦 I 🗹 All Carrier Variants 🔍 I	
Sample QC Filters	🔦 🗖 🖂 Carrier Variant (Current) is true 🔌 🗖)
2 13	39,194 2 2	J
Pathogenic Variants	× □	
2 :	2,361	
ACMG Carrier Panel Genes	<i>V</i> □	
Gene IDs - RefSeq Genes 110, NCBI		
ACMG Carrier Screening Panel Gene IDs ACMG Carrier Screening	×	
	• • •	
	2 4	
Workflows	4 -	
Recessive	1	
🗹 Gene Inheritance is (Default (Recessive), Recessive) 🔦 🗖 🛛 🖾 X Chr - Not in PAR Regions 🔌 🗖		
🗌 Carrier Variant (Current) is true 🛛 🔧 🗖		
2 4		
	2 4	
	2 4	2
		a

遺伝子パネルの選択

■ ACMG Carrier Screening Panel

- 米国人類遺伝学会(ACMG)が発表した、人 種を問わず使用可能なキャリアスクリーニング用の 遺伝子パネル
- ワークフローでは、保因者頻度が1/200以上の常 染色体劣性と、有病率が1/40,000以上のX連 鎖性遺伝性疾患の原因遺伝子を解析に用いる
- 必要に応じて遺伝子の追加や削除も可能

Gregg, A.R., Aarabi, M., Klugman, S. *et al.* Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG). *Genet Med* **23**, 1793–1806 (2021).

ワークフロー実行結果

🦯 バリアントテーブル

/ 📰 Variants: 5 🗙 🔲 Variant Genes:	4 🗙 🔲 Sampl	oles: 2 🗙 💙 🗸	🤌 ACMG Gui	idelines 🗙	+											
Variants 🗸 🔛 💿	· 오 다 🖬	; 🛛 🖂] Filter Variar	nts: SAMPLE1	l ⊤ ⊡ ^											Variants: 5
Variant Info	F		SA	MPLE1				Partn	er (SAMPLE2)		Gene		Variant S	ite ACMG Classifier	
^ Chr:Pos Ref/Alt Ide	entifier PV	VAF	AD	GQ	GT	Zygosity	VAF	AD	GQ	GT	Zygosity	Gene Names	Classification	Auto Classification	ACMGClassificationCrit***	Gene Inheritance
7:117548639 G/-	? 📒	0.510204	24,25	99	0/1 Hete	rozygous	?	?,?	?	./.	?	CFTR, CFTR-AS1	Likely Pathogenic,	Likely Pathogenic, VUS	PM2, PVS1 Strong, PM2, P	Recessive, Default (Recessive)
7:117548640 G/C	?	?	?,?	?	./.	?	0.592593	22,32	99	0/1	Heterozygous	CFTR, CFTR-AS1	Likely Pathogenic,	Likely Pathogenic, VUS	PM2, PVS1 Strong, PP5, P	Recessive, Default (Recessive)
11:89296535 T/C	? U	0.181818	45,10	99	0/1 Hete	rozygous	?	?,?	?	./.	?	TYR	VUS/Weak Pathog	VUS/Weak Pathogenic	PM2	Recessive
11:89296581 T/C	?	0.185185	44,10	99	0/1 Hete	rozygous	?	7,7	?	./.	?	TYR	VUS/Weak Pathog	VUS/Weak Pathogenic	PM2	Recessive
X:153866700 G/A	(0.313726	35,16	99	0/1 Hete	rozygous	ſ	6,6	ſ	./.	(LICAM	Pathogenic	Pathogenic	PIM2, PVS1, PP5	Kecessive
7:117548639 - G/- (1bp del) Entrez Gene ID: 1080, 111082987 7:117548639 - G/- (1bp del) Variant Info Chr:Pos 7:117548639 Ref/Alt G/- Identifier ? Show 4 hidden fields Flags Pathogenic Variants True Sample Fields Sample SAMPLE1 Variant Allele Fraction 0.510204 Allelic Depths (AD) 24, 25 Genotype Qualities (GQ) 99 0/1 Genotypes (GT) 0/1 Zygosity Heterozygo	Partner (SAM) ? 2, ? ? 1, ? us ?	MPLE2)			Сору) ×	- -	ワーク バリア ごとの のアノ テーフ	ワローが ントテー ACMG; テーショ ブル上のラ	完了 ブルイガン デーク	マすると、 には、両 ドラインの 表示され タは、バリ	絞り込まれ サンプルの 評価結果 る アントごと	れたバリアント ▼VCFファイル ≷、各種デー に詳細データ	、のテーブルが引 のデータ(VA タベース(Clin タ表示用画面	長示される NF, GTなど)、ノ nVar, gnomA でも確認可能	「(リアント Dなど)

詳細表示用画面

VSClinicalによる解析

Likely Pathogenic O

- VSClinical
 - バリアントの絞り込みを行った後は、
 VSClinicalのダッシュボード画面で
 続きの解析を行う

Filgen

biosciences & nanoscience

VSClinicalのダッシュボードでは、
 データベースや論文の内容を確認
 しながら、評価結果やレポート内容
 の編集などを行う

遺伝子情報の確認

Transcript:	NM 00049	92.4 (Auto Detected)					
		× 7		NCBI RefSeq			
nheritance Model:	Recessive		× _	NCBI RefSeq	Gene Annotati	ons Disorders	
Disorder:	Cystic fibro	osis	~		NCBI RefSeg CG	D OMIM GHR	
	OMIM: 21970	0 🖉	Mondo: 0009061	Gene Id: Name:	OMIM Genes		
		î s	ave Gene Preferences	Alias:	Omini Genes	Gene Annotations Disorders	
					Gene Nar		
Autations in CF7	TR			This gene encod	OMIM	Conditions:	
Mutation	Call State	Classification	Report As	channel, making	Description:	Congenital bilateral absence of vas deferens 🗹	AR
c.1210-2delG	0 0	Likely Pathogenic	Primary Findings	controls ion and	The CFTR gene	Cystic fibrosis 🗷	AF
c.1210-1G>C	00	Likely Pathogenic	Primary Findings	phosphorylation	functions as a lo	Bronchiectasis with or without elevated sweat chlori	AD
			I	ATP hydrolysis.	and regulated ti	Pancreatitis hereditary 🗹	AD
				descent. The mc	distinguished by regulatory doma	Hypertrypsinemia neonatal 🗷	7
				DeltaF508, resu protein. Multiple	<u> </u>	Sweat chloride elevation without CF 🗷	?
				genome. (provid	References: 1384328 🗹		
				Source: NCBI Re	21083385		
					21003305		
				L	17331079 🗹		
					12833419 🕜		
気子情報の	確認画面で	では、疾患名や遺伝	云形式、様々なデー	9	1706309 🕑		
ースでの登録	情報などを	閲覧可能			1545465 🖸		

- データベースへのURLリンクや、論文のアブストラクトなども表示可能

-

View All 285 References ...

バリアントの病原性評価

Filgen Sister Strategy Strateg

Page 29

Richards et al.

■ ACMGガイドラインによるバリアントの 病原性評価

- バリアントの一般集団内のアレル頻度、コンピュー タによる機能予測、既知の臨床情報などを利用し、 バリアントの病原性スコアを自動計算
- VSClinicalのダッシュボードでは、データベースの情報を閲覧しながら、評価結果やスコアなどをユー ザーが調節可能

	Ben	ign		Patho	genic	
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BAI/BSI OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls P34	
Computational And Fredictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LDF is a known mechanism of disease PVS1
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense In gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	<u>a</u> >	
De novo Data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity 8 maternity confirmed PS2)
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in frans with a pathogenic variant PM3		
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene APd			

評価の開始

- 評価に用いるバリアントは、VCFファイルよりインポートしたバリアントテーブルより選択するか、キーボードでバリアント名を直接入力する ことも可能
- バリアントを指定すると、該当する評価項目が自動で検出され、評価結果のテキストとともに表示される

評価結果の編集

PS3

BS3

G

	Variant	HGVS	AA Change	Clinical Significance
>	This Variant	c.2380C>T _{p.Q794*}	$GIn \rightarrow Ter$ $Cag \rightarrow Tag$	Pathogenic \star ★ ★
>	2811237	c.2381A>G _{p.Q794R}	$GIn \to Arg$	Uncertain Significance
>	2796731	с.2382G>C _{р.Q794H}	$GIn \rightarrow His$	Likely benign

自動評価の結果を編集

自動検出できない項目の評価結果を追加

- データベースの引用データの表示画面で、評価結果を手動で編集することができ、その結果 病原性スコアが変化する
- ACMGガイドラインの評価項目には、VSClinicalで自動検出できない項目もあり、このよう な項目は手動で評価結果を追加することが可能

Scored Criteria: PM2 PVS1 PP5 Probability of Pathogenic:	評価結果を 編集	Scored Criteria: PM2 PVS1 BP6 Probability of Pathogenic:
87.9% - Predicted Classification: Pathogenic Classification: Pathogenic ©		66.1% - Predicted Classification: Pathogenic Classification:

病原性スコアと臨床的解釈

evidence level and computes a probability of each of the five classifications. It was modeled and trained to agree with ACMG classification rules when provided non-conflicting criteria.

評価結果サマリー

The stop gained NM_000425.5(L1CAM):c.2380C>T (p.GIn794Ter) has been reported to ClinVar as Pathogenic/Likely pathogenic with a status of (2 stars) criteria provided, multiple submitters, no conflicts (Variation ID 226120 as of 2024-05-03). The p.Gln794Ter variant is novel (not in any individuals) in 1kG All. The p.Gln794Ter variant is novel (not in any individuals) in gnomAD v4 All. This variant is predicted to cause loss of normal protein function through protein truncation. This variant is a stop gained variant which occurs in an exon of L1CAM upstream of where nonsense mediated decay is predicted to occur. This variant has been previously classified as pathogenic, indicating that the region is critical to protein function. There are 46 downstream pathogenic loss of function variants, with the furthest variant being 419 residues downstream of this variant. This indicates that the region is critical to protein function. The gene L1CAM has a low rate of benign loss of function variants as indicated by a low upper bound of the observed/expected confidence interval 0.13. The p.Gln794Ter variant is a loss of function variant in the gene L1CAM, which is intolerant of Loss of Function variants, as indicated by the presence of existing pathogenic loss of function variant NP_000416.1:p.V8Gfs*24 and 71 others. For these reasons, this variant has been classified as Pathogenic. 🛨

Add to Interpretation

レポート用テキスト

- 評価結果の編集の完了後、各項目が病原性の可能性を示唆するスコアや良性の可能性を示唆するスコア、最終的な判定結果を まとめたサマリーを表示
- 同時にレポートに記載される臨床的解釈のテキストも出力

レポート出力手順

- VSClinicalにて、サンプル情報の入力とバリアントの評価を行い、レポートテンプレートを選択すれば、レポートが自動で作成される

- サンプルやバリアント情報を変更して、レポートを出力し直すことも可能

キャリアスクリーニング用レポートテンプレート

Carrier Screening Report Template

- マルチサンプルに対応:サンプル別にサンプル詳細情報と、 検出されたバリアントをレポートに記載
- 疾患のリスク計算:バリアントが検出された遺伝子と対応する疾患の生殖リスクを計算
- バリアント情報:検出されたバリアントのACMGガイドライン による評価結果と臨床的解釈をレポート出力
- **疾患の詳細情報:**OMIMに登録されている疾患情報をレポート出力

↔ ↔ Partner ↔	Sample Information↔	¢		
с				
MRN: 선 신	Additional: 쉬 쉬			
Sex: Female⊖	Type: ←	O	rder Date: ↩	
Patient Name: SAMPLE1↔ DOB: ↔	Referring Facility: ↔ Ordering Physician: ↔	Co	ollection Date: ↔ eceived Date: ↔	
- ducine s				
Patient ∉	Sample Informationed	Ę		
Precision Medicir	1e SAMPLE1€	SAMPLE2₩	(DRAFT)⇔	
Golden Labs	S Patient Name↓	Partner Nar	ne↓ Report Date↓	
Golden Labs	5 Patient Name↓	Partner Nar	ne↓ Report Date↓	

ACMG CARRIER SCREENING PANEL←

ABOUT THE TEST

This carrier status test is a comprehensive Next Generation Sequencing (NGS) panel that detects genetic variants in genes that are associated with an increased risk of having a child with a genetic disorder. 4

RESULT: POSITIVE

€

RESULTS SUMMARY ~

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated \leftrightarrow below. \leftrightarrow

Disease	Gene⊏	Variant(s)⊂	Inheritance ⁽²⁾	Sample	Reproductive Risk
Cystic Fibrosis	CFTR↩	Detected↩	Autosomal	SAMPLE1↓	1 in 4 🖓
			Recessive ←	SAMPLE2←	
Fragile X syndrome	FMR1↩	Not Detected↩	X-linked	4	1 in 7,992,406 ↩
			Dominant		
Hydrocephalus due	L1CAM←	Detected↩	X-linked	SAMPLE1↩	1 in 4 ↩
to congenital			Recessive ←		
stenosis of					
aqueduct of Sylvius					
Spinal muscular	SMN1↩	Not Detected↩	Autosomal	ę	1 in 5,579,044 ↩
atrophy			Recessive ←		

生殖リスクの計算

Results Summary 4

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated \leftarrow below. \leftarrow

Disease	Gene	Variant(s)⊖	Inheritance ⁽¹⁾	Sample⊖	Reproductive Risk⊖ €
Cystic Fibrosis	CFTR↩	Detected↩	Autosomal	SAMPLE1↓	1 in 4 🖓
			Recessive⇔	SAMPLE2€	
Fragile X syndrome	FMR1€	Not Detected↩	X-linked	4	1 in 7,992,406 ←
			Dominant		
Hydrocephalus due	L1CAM↩	Detected↩	X-linked	SAMPLE1↩	1 in 4 🖓
to congenital			Recessive ←		
stenosis of					
aqueduct of Sylvius					
Spinal muscular	SMN1↩	Not Detected↩	Autosomal	4	1 in 5,579,044 ←
atrophy↩			Recessive⇔		

解析結果サマリー

DISEASE CARRIER REPRODUCTIVE RISK (GENE↩ **ETHNICITY CARRIER FREQUENCY**← Surfactant metabolism ABCA3↩ General↩ 1 in 116↩ 1 in 21,178,404 ← dysfunction, pulmonary 3↩ Stargardt Disease, Type 1↩ ABCA4↩ General↩ 1 in 20€ 1 in 580,644↩ Diabetes mellitus, permanent 1 in 10.510.564 ↔ ABCC8↩ General↩ 1 in 82↩ neonatal 3↩ Adrenoleukodystrophy₽ ABCD1↩ General↩ 1 in 15,000€ 1 in 1,199,924€ Medium Chain Acyl-CoA ACADM↩ General↩ 1 in 5,579,044∉ 1 in 60↩ Dehydrogenase Deficiency↩ Very Long-Chain Acyl-CoA ACADVL↩ General↩ 1 in 156€ 1 in 38,464,804↩ Dehydrogenase Deficiency↩ α-Methylacetoacetic aciduria⇔ ACAT1↩ General↩ 1 in 200€ 1 in 633,933,769€

全疾患のリスク計算の一覧

- 解析結果サマリーには、バリアントが検出された遺伝子と疾患名、および 疾患の生殖リスクが記載される
- 嚢胞性線維症、脆弱X症候群、脊髄性筋萎縮症は、遺伝子にバリアントが検出されなかった場合でもNegative findingsとして記載される
- バリアントが検出されなかった場合の残留リスクは、各疾患の保因者頻度 と検出率をもとに、ベイズの定理で計算される

- バリアントが検出されなかったすべての遺伝子は、疾患名と保因者頻度、 残留リスクの一覧表が、補足データとしてレポートに記載される

その他のレポー	卜出力項目
---------	-------

÷ ÷

• Р АТ	IENT VARIANT SUMMA	RY			÷
VAR	IANTS OF CLINICAL SIGN	IFICANCE			
¢					
	GENE & TRANSCRIPT	VARIANT∈	CRITERIA←	CLASSIFICATION	÷
	CFTR NM_000492.4	c.1210-2delG↩	PM2, PVS1_Strong	Likely pathogenic⊖	÷
	LOCATION	ALLELE STATE	1KG ALL (NOVEL) AL	LELE FREQUENCY	÷

LOCATION ~	ALLELE STATE	IKG ALL (NOVEL) ALLELE FREQUENCY		
Intron 9€	Heterozygous	ਹ Novelਦ		
GENOMIC POSITION		NGS READS SUPPORTING CHANGE		
g.117548639delG↩		51.02% (25 of 49)↩		
VARIANT INTERPRETATION: The cold	ice acceptor variant NM	000402 4/CETB):c 1210-2delC bas not been reported previously as a		

VARIANT INTERPRETATION: The splice acceptor variant NM_000492.4(CFTR):c.1210-2delG has not been reported previously as a pathogenic variant nor as a benign variant, to our knowledge. The c.1210-2delG variant is novel (not in any individuals) in 1kG All. The c.1210-2delG variant is novel (not in any individuals) in gnomAD_v4 All. This variant mutates a splice-acceptor sequence, but is predicted to preserve the reading frame, resulting in in-frame exon skipping. This variant results in the loss of an acceptor splice site for the clinically relevant transcript. There are 9 pathogenic variants in the same region as the variant c.1210-2delG_ indicating that the region is critical to protein function. The c.1210-2delG variant is a loss of function variant in the gene CFTR, which is intolerant of Loss of Function variants, as indicated by the presence of existing pathogenic loss of function variant NP_000483.3:p.MISfs*39 and 701 others. For these reasons, this variant has been classified as Likely Pathogenic.4

バリアント情報

Precision Medicine	Patient Name Jane Doe	Fortron Name John Doe	(DRAFT)	
Patient	Sample Information			
Patient Name: Jane Doe DOB: 09/03/1989 Sex: Female MRN: 0041	Referring Facility: Facility Ordering Physician: Physician Type: Blood Additional	Collection Date: 06/01/2023 Received Date: 06/01/2023 Order Date: 06/01/2028		
Partner	Sample Information			
Partner Name: John Doe DOB: 03/03/1987 Sex: Male MEN: 6321	Referring Facility: Facility Ordering Physician: Physician Type: Blood Additional:	Collecti Receive Order D	on Date: 06/01/2023 d Date: <u>06/03/2023</u> wte: 06/01/2023	

- レポートにはバリアントの詳細データや評価結果の情報、 疾患の詳細説明などが自動で書き込まれる

AGUTT THE TET
Use commend that are a summarized and the descention frequencing (MSI) panel that detech panels are a summarized and and any panels (channel).
REALT: POINTER
REALT: POINTER:
REALT: POINTER:
REALT: POINTER: The descent and any panels (channel) is in the optimal of the descent and the desc

Cystic Fibrosis	OFTR	Detected	Autosomal Recessive	Jane Doe John Doe	1 in 4
Fragile X syndrome	FMR1	Not Detected	X-linked Recessive		1 in 724
Alpha Thalassemia	HEAL	Detected	Autosomal Recessive	John Doe	1 in 304,099
Hydrocephalus due to congenital stenosis of aqueduct of Sylvius	LICAM	Detected	X-linked Recessive	Jane Due	1 in 23,099
Spinal muscular atrophy	SMN1	Not Detected	Autosomal Recessive		1 in 5,579,044

AUTOSOMAL RECESSIVE INHERITANCE←

WHAT IS SPINAL MUSCULAR ATROPHY?↔

A rare, genetic, neuromuscular disease characterized by proximal muscle weakness with an early involvement of foot and hand muscles following normal motor development in early childhood, a rapidly progressive disease course leading to generalized areflexic tetraplegia with contractures, severe scoliosis, <u>hyperlordosis</u>, and progressive respiratory insufficiency leading to assisted ventilation. Cranial nerve functions are normal and tongue wasting and fasciculations are absent. Milder phenotype with a moderate generalized weakness and slower disease progress was reported.⁴⁴

お問い合わせ先:フィルジェン株式会社 TEL: 052-624-4388 (9:00~18:00) FAX: 052-624-4389 E-mail: biosupport@filgen.jp