

– PROTOCOL –

LifeDireX COVID-19 RT-qPCR Detection Kit

Cat No. QP019-0100 Size: 100 Reactions Sample: 5pg ~ 1µg RNA / 20µl Reaction Storage: Stable for up to 1 year at -20°C

Description

In view of the joint global efforts of advancing collaborative research in diagnostics, therapeutics, and vaccination in the fight against the COVID-19 (SARS-CoV-2) pandemic, Bio-Helix has specifically developed the LifeDireX COVID-19 RT-qPCR Detection Kit for human respiratory tract specimens. The kit is characterized by: (1) High specificity for the RdRP and N target markers as recommended by WHO and US CDC; (2) Data obtained in less than 2 hours; and (3) Compatible with standard RT-qPCR machines (ABI 7500, Bio-Rad CFX96, QuantStudio's 7 Flex).

Kit Contents

Part No.	Component	Volume	Reactions/Kit
QP019-0100-1	2X RT-qPCR MasterMix	1.25 ml	100
QP019-0100-2	RT-qPCR Enzyme Mix	40 µl	100
QP019-0100-3	COVID-19 Primers/Probes	200 µl	100
QP019-0100-4	Positive Control	100 µl	20
QP019-0100-5	Negative Extraction Control	1.0 ml	20
QP019-0100-6	Nuclease-Free Water	1.0 ml	100

Required Materials

» Real-Time PCR tubes » Real-Time PCR instrument

Real-Time PCR Instrument

ABI: 7500 Fast Series Bio-Rad: CFX96 Roche: LightCycler Series Agilent: Mx3005p Qiagen: RotorGene 3000

BIO-HELIX CO., LTD.

Application

- » Gene Expression (mRNA) Analysis
- » Copy Number Analysis
- » SNP Genotype Analysis

Protocol

 PCR Reaction: Thaw and assemble the following components in a 0.2 ml PCR tube on ice just prior to use: COVID-19 Primers, COVID-19 Probes, 2X RT-qPCR MasterMix, and RTqPCR Enzyme Mix. Caution: Do not add more than one RNA sample into a single qPCR tube. Mix gently. If necessary, centrifuge briefly.

PROTOCOL —

Component	20 µl Patient Sample	20 μl Positive Control	20 µl Negative Extraction Control	Negative Control
RNA Sample	5 μl	0 µl	0 μΙ	0 µl
COVID-19 Primers/Probes	2 μl	2 µl	2 μl	2 µl
2X RT-qPCR MasterMix	10 µl	10 µl	10 µl	10 µl
RT-qPCR Enzyme Mix	0.4 μl	0.4 μl	0.4 μl	0.4 μl
Positive Control	0 µl	5 µl	0 μl	0 µl
Negative Extraction Control	0 µl	0 µl	5 μl	0 µl
Nuclease – Free H ₂ O	2.6 μl	2.6 μl	2.6 μl	7.6 µl

2. Use the Nuclease-free H₂O for the Negative Control while using Positive Control for the Positive Control setup. Cap tubes and place in the thermal cycler.

3. Process in the thermal cycler for 42 cycles as follows:

Steps	Temperature/Time	Cycle	
cDNA Synthesis	15 minutes at 42°C	1	
Pre-Denaturation	10 minutes at 95°C		
Denaturation	15 seconds at 95°C	10	
Annealing	60 seconds at 60°C	40	
Melting curve	Refer to specific guidelines for instrument used		

Note:

Optimal conditions for amplification will vary depending on the primers and thermal cycler used. It may be necessary to optimize the system for individual primers, template, and thermal cycler.

4. Detection: As three channels (FAM, ROX, HEX) are used in this one tube qPCR assay, we recommend to perform the channel calibration as requested by its manufacturer. Please refer to the instrument's user manual to perform this calibration. Choose the FAM, ROX, and HEX channels for each sample to be tested with the LifeDireX COVID-19 RT-qPCR Detection Kit. Select "None" for ROX passive reference on any qPCR machine requiring ROX as the reference dye.

Expected Performance of Co	ontrols
----------------------------	---------

Control Type	Used to Monitor	Expected Results and Ct Values		
Control type		N (FAM)	RP (HEX)	RdRP (ROX)
	Flawed assay setup and	Positive	Negative	Positive
Positive	reagent failure, including	Ct < 40.0	Ct ND	Ct < 40.0
	degraded primer and probe	Ct < 40.0	CUND	Cl < 40.0
Negative	Assay or extraction reagent	Negative	Negative	Negative
("NTC")	contamination	Ct ND	Ct ND	Ct ND
Negative	Cross-contamination	Negative	Positive	Negative
Extraction Control		Ct ND	Ct < 40.0	Ct ND

ND = Not Detected.

Results are considered invalid if any control does not perform as specified above.

Interpretation of Results

S	ARS-CoV-	2	Interpretation	Action	
N	RdRP	RP	Interpretation	Action	
+	+	+/-	Positive	Report result to sender health authority.	

— PROTOCOL —

If only c two targ positive		+/-	Inconclusive Result	Repeat RT-qPCR of samples or repeat from extraction step. If result is still inconclusive, recommend collection of new specimen(s) from the patient.
-	-	+	Negative	SARS-CoV-2 not detected. Report result to sender health authority
-	-	-	Invalid Result	Repeat from extraction step. If the repeated result remains invalid, recommend collection of a new specimen(s) from the patient.

Troubleshooting

Refer to the table below to troubleshoot problems that you may encounter when quantifying nucleic acid targets with the kit.

Trouble	Cause	Solution
Poor Signal	Inhibitor Present	 Perform a dilution series of the PCR template to determine whether the effect of the inhibitory agent can be reduced. Take extra care with the nucleic acid extraction steps to minimize carryover of PCR inhibitors.
or No Signal	Degraded Template Material	 Do not store diluted template in water or at low concentrations. Check the integrity of template material by automated or manual gel electrophoresis.
	Inadequate Thermal Cycling Conditions	 Try using a minimum extension time of 30 sec for genomic DNA and 15 sec for cDNA.

 PROTOCOL	_
I I COLOCOL	

		1. To minimize the possibility of contamination		
		of PCR components by PCR product or other		
		template, designate a work area exclusively		
Signalin	Contamination of	for PCR assay setup.		
Signal in Negative	Reaction Components	2. Use a solution of 10% bleach instead of		
Control	with Target Sequence	ethanol to prepare the workstation area for		
Control		PCR assay setup. Ethanol will only induce		
		precipitation of DNA in your work area,		
		while the 10% bleach solution will hydrolyze,		
		as well as dissolve, any residual DNA.		
		1. Perform a dilution series of the PCR		
Poor	Inhibitor Present	template to determine whether the effect of		
Reproducibility		the inhibitory agent can be reduced.		
Across		2. Take extra care with the nucleic acid		
Replicate		extraction steps to minimize carryover of		
		PCR inhibitors.		
Samples	Primer Design	1. Verify primers design at different annealing		
		temperatures.		
		1. Reduce primer concentration.		
	Primer- Dimer	2. Evaluate primer sequences for		
Low or High Reaction Efficiency		complementarity and secondary structure.		
		Redesign primers if necessary.		
		3. Perform melt-curve analysis to determine if		
		primer- dimers are present.		
	Insufficient	1. Use a thermal gradient to identify the		
		optimal thermal cycling conditions for a		
	Optimization	specific primer set.		

Caution

- 1. Shake gently before use to avoid foaming and low-speed centrifugation.
- 2. Reduce the exposure time.
- 3. During operation, always wear a lab coat, disposable gloves, and protective equipment.

