

全ゲノム/全エクソームシークエンスにおける CNV解析

フィルジェン株式会社 バイオインフォマティクス部 (biosupport@filgen.jp)

VS-CNV

- BAMファイルのリードカバレッジデータをもとに、CNV検出 を行う機能を付加する、VarSeq®用の有償アドオン
- 遺伝子パネルや全エクソーム、全ゲノムシークエンスデータ に対応
- 検出されたCNVは、ゲノムブラウザーでグラフィカルに表示
- 検出CNVに対して、公共データベースの情報を用いたア ノテーション付けや、ACMGガイドラインに基づいた臨床的 意義の評価も可能

他手法との比較

検出可能なCNV

データタイプ

	Small: 150bp+	Medium: 1 – 10kb	Large: 10kb+	Gene Panel	Whole Exome	Whole Genome
MLPA	\checkmark			\checkmark		
Microarray			\checkmark			\checkmark
VS-CNV	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

VS-CNV導入のメリット

■ 実績

- 15報以上の論文実績
- MLPA法との100%の相関 (Iacocca et al. 2017)

■ メリット

- 実験コスト・時間の節約
- ワークフローのシンプル化

 Journal of LIPID RESEARCH
 Published by the American Society for Biochemistry and Molecular Biology

 J Lipid Res. 2017 Nov; 58(11): 2202–2209.
 PMCID: PMC5665663

 Published online 2017 Sep 5. doi: 10.1194/jlr.D079301
 PMID: 28874442

 Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia^[S]

<u>Michael A. lacocca</u>,^{*†} <u>Jian Wang</u>,[†] <u>Jacqueline S. Dron</u>,^{*†} <u>John F. Robinson</u>,[†] <u>Adam D. McIntyre</u>,[†] <u>Henian Cao</u>,[†] and <u>Robert A. Hegele</u>^{1,*†}

Author information
 Article notes
 Copyright and License information <u>Disclaimer</u>

This article has been cited by other articles in PMC.

Abstract

Go to: 🕑

Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene (*LDLR*). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in *LDLR* for the detection of whole-exon copy number variants (CNVs). The latter is essential because ~10% of FH cases are attributed to CNVs in *LDLR*; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in *LDLR* CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories.

データ解析の流れ

^ Region	Name	Mean Depth	Min Depth	Max Depth
3:10183433-10183891	Gene=VHL,RNA=NM_000551.3,Ex=1	33.7582	22	43
3:10188179-10188340	Gene=VHL,RNA=NM_000551.3,Ex=2	12.7963	10	16
3:10191452-10191669	Gene=VHL,RNA=NM_000551.3,Ex=3	37.9587	20	53
3:37034920-37035174	Gene=MLH1,RNA=NM_000249.3,Ex=1	40.5569	26	50
3:37038091-37038220	Gene=MLH1,RNA=NM_000249.3,Ex=2	19.0308	12	22
3:37042427-37042564	Gene=MLH1,RNA=NM_000249.3,Ex=3	15.3986	7	20
3:37045873-37045985	Gene=MLH1,RNA=NM_000249.3,Ex=4	13.7168	9	19
3:37048463-37048574	Gene=MLH1,RNA=NM_000249.3,Ex=5	16.6607	12	21
3:37050286-37050416	Gene=MLH1,RNA=NM_000249.3,Ex=6	15.4275	8	20

任意指定のビンサイズごとにカバレッジを算出

^ Region	Mean Depth	Mean Forward Depth	Mean Reverse Depth
1:1-1000000	0.0155643	0.00798095	0.00758333
1:1000001-2000000	0.010238	0.005363	0.004875
1:2000001-3000000	0.0208937	0.0104758	0.0104179
1:3000001-4000000	0.0146835	0.00723882	0.00744471
1:4000001-5000000	0.035065	0.017518	0.017547
1:5000001-6000000	0.047041	0.023451	0.02359
1:6000001-7000000	0.026751	0.013479	0.013272
1:7000001-8000000	0.05058	0.024961	0.025619

カバレッジの正規化

Coverage Region I	Overlapp	RD-NGSP	Target Copy Number State for RD-NGSPROGENITYCANCER-SAMPLE13						
Region	Gene Names	Mean Depth		CNV State		Normalized Mean Depth		Avg. Normalized Control Depth	
13:32936641-32936850	BRCA2	810.281		Duplicate		1.66835		1.17383	
13:32937297-32937690	BRCA2	828.008		Duplicate		1.70484		1.20154	
13:32944520-32944714	BRCA2	740.241		Duplicate		1.52414		1.02256	
13:32945074-32945257	BRCA2	846.446		Duplicate		1.74281			

セグメンテーション

- ゲノム上で、連続するターゲットまたはビンでCNVが検出された場合は、それらを連結させて一つの CNVとする
- 外れ値などのノイズ除去のため、Circular Binary Segmentation (CBS) または CNAM Optimal Segmentationアルゴリズムを使用

VAFによる検証

- 検出されたCNV上に存在する、SNVなどのVAF(Variant Allele Frequency)の値に基づき、 CNVの信頼性を自動で検証
- VAFの値が1/3、2/3になっていれば、Duplicationが起こっている根拠とされる

LOH補正

- 染色体上に、大規模なDeletionまたはDuplicationが存在する場合、サンプルの平均カバレッジ が影響を受ける
- VAFの値を基にLOH (Loss of Heterozygosity)を自動で検出し、染色体上の2倍体以外の 領域は、カバレッジの正規化の計算対象から除外する

必要なデータファイル

- 必要ファイル
 - VCFファイル
 - BAMファイル
 - BEDファイル(オプション) * 一部のパネルのBEDファイル(ターゲット領域データ)は、ソフトウェア上からダウンロードも可能

データとサンプルの条件

■ カバレッジ(リード深度)

- 遺伝子パネル、全エクソームシークエンスの 場合は、100x以上が必要
- 全ゲノムシークエンスの場合は、0.02x以上が必要(ビンサイズ:1Mbpの場合)

■ サンプル

- 30以上のリファレンス用サンプル
- 同一の実験条件(パネルの種類、サンプ ル調整、シークエンスデータ量など)

Current Sample: RD-NGSPROGENITYCANCER-SAMPLE11

ターゲット(ビン)ごと

- Ratio: 解析サンプルとリファレンスサンプル のカバレッジ比

出力データ

 Z-score: 解析サンプルとリファレンスサン プルのカバレッジの差を、標準偏差で割った 値

CNVごと

- P-value: 検出されたCNVの信頼値
- Flag: 検出されたCNVのQC情報(低カ バレッジ、極端なGC含量など)

サンプルごと

- Flag: サンプルごとのQC情報(低カバレッジ、リファレンスサンプルとのミスマッチなど)

Filgen

biosciences & nanoscience

ビジュアライゼーション

各出力データは、ワンクリックでゲノム
ブラウザーにプロットが可能

Coverage Region Info	Bin Copy N	umber State for Male 9		
^ Region	CNV State	Z Score	Ratio	
1:1-1000000	Diploid	-0.533545	0.860434	
1:1000001-2000000	Diploid	1.50802	1.46392	
1:2000001-3000000	Diploid	0.623491	1.17986	
1:3000001-4000000	Diploid	-0.573874	0.853885	
1:4000001-5000000	Diploid	-0.133061	0.980613	
1:5000001-6000000	Diploid	-0.774154	0.88389	

Ratioと検出 CNVをプロット

+

CNV Info					Male 9					
	^ Region	Туре	# Targets	Span	CNV State	Avg Target Mean Depth	Avg Z Score	Avg Ratio	Karyotype	p-value
13:20000	0001-115000000	Loss	95	95000000	Het Deletion	0.0125498	-2.96658	0.471608	45,XX,-13	1.23984244499035e-135

臨床的意義の確認

- VarSeqでは、VS-CNVによるCNVコールだけではなく、 検出された各CNVへのアノテーション付けによる、臨床的 意義の確認も可能
 - CNVデータベース
 - 表現型オントロジー
 - ACMG & ClinGenガイドライン (VSClinical)

🤣 *Exome CNV Tutorial - Golden Helix VarSeq 2.2.3										
<u>F</u> ile <u>V</u> iew	<u>T</u> oo	ols <u>H</u> e	elp							
	I .	Add 🖕	🛃 Export	. I∠_ P	lot 🗸	♥ Connect ▲ NA24385-Twist₩				
🕎 Filter (□3	Variant	t Annotatior	n)NVs	* × +				
Coverage Re		<u>S</u> econ	dary Tables	•		Coverage Region Annotation				
🗹 🖻 Filter	Σ.	Computed Data			□,	Import Regions from File				
						LoH Annotation				
					□,	CNV Annotation				
					₽	Import CNVs from File				

CNVデータベース

CNVデータベース

	Overlappin	ng CNVs ClinVar CNVs an	Overlapping CNVs GnomAD High Frequency CNV Regions 2019-11-25, GHI					
Region	dbVar ID	Classification	Review Status	Gene Names	Conditions	Overlap Type	Average Alt Allele Counts (AC)	Average Alt Allele Freq (AF)
16:89814557-8981818	nssv1415435,ns	Uncertain Significance, Un	(0 Stars) No Assertion Crite	FANCA,LOC	See cases, See cases	?	?	?
17:7668436-7676594	?	Uncertain Significance	(1 Stars) Criteria Provided,	TP53	Li-Fraumeni syndrome	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	Within Region	8834	0.407232
17:19020809-1919673	?,?,nssv581965,	Benign, Benign, Benign, Lik	(0 Stars) No Assertion Crite	GRAP, GRAP	not provided, not provid	Partial Overlap	3673	0.169337
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	Within Region	12253	0.564826
17:46061148-4666196	nssv578359,nsv	Benign, Likely Benign, Beni	(1 Stars) Criteria Provided,	NSF,LRRC37	See cases, See cases, See	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	?	?	?	?	?
?	?	?	?	7	?	?	?	?
7	7	?	?	1	7	7	?	1
?	?	?	?	?	?	7	?	?
1	7	1	((1	7	(1
۲ 	1	() (00) NM A (2) (0))	()	(((
19:54222913-5424045	nssv13654532,n	Benign, Benign	(0 Stars) No Assertion Crite	LILKB3,LILK	See cases, See cases	(((
۲ ۲	، م	۲ ۲	، م	، م	۲ ۲	· ```	۲ ۵	۲ ۲
20.4570044.4500450	((Denim	(a Share) No Association Crite	CIDDD4) 	(17054)
20:1570841-1600450		Benign	(U stars) NO Assertion Crite	SIKPB1	not provided	within Region	1/864	0.823469

■ データベースの情報を付加すると、検出結果のCNVテーブルに、各アノテーションのフィールドが追加される

表現型オントロジー

- ユーザー指定の表現型オントロジー (HPO) に基づき、表現型と関連する遺伝子を検索 するツールを搭載
- 検索結果の遺伝子に対して、単純にアノテ ーション付けを行う場合と、関連の強さに応じたランク付けを行う2種類の手法を選択 可能

Match Genes Linked to Phenotype

- ユーザー入力の表現型オントロジーと関 連する、すべての遺伝子にアノテーション 付けを行う

CNV PhoRank Gene Ranking

ユーザー入力の表現型オントロジーとの
 関連の強さに応じて、遺伝子ごとのラン
 ク付けを行う

😵 PhenotypeGenes – 🗆 X
New Field Name:
Hypodontia, Keratit Genes
Phenotype Terms:
Enhance with OMIM phenotypes
hypodontia, keratit keratitis punctate keratitis
Gene Association HPO gene association HPO +1 hop in GO
Linked Genes: AARS1, ACOX1, ACTL6B, ADAMTS2, AP3B2, APC, ARL6, ARV1, ATP6V1A, ATP6V1B2, BAZ1B, BBS1, BCL11B, C80RF37, CACNA1A, CACNA1B, CCDC28B, CDH1, CEP152, CHSY1, CKAP2L, CLDN1, CLIP2, CLTC, CNKSR2, COL17A1, CPLX1, CTBP1, CTC1, CTSK, CYFIP2, DDX59, DHDDS, DKC1, DNAJC21, DNM1, DVL1, DVL3, DYNC2LI1, EDA, EDAR, EDARADD, EEF1A2, ELN, EVC, EVC2, FGD1, FGF10, FGF12, FGF3, FGFR2, FGFR3, FGFRL1, FLNB, FOXC1, FZD2, GABRA2, GABRA5, GABRB2, GABRG2, GDF5, GLI1, GRHL2, GRHL3, GRIN2D, GTE21, GTE21RD1, HCN1, HMGA2, HSPA0, 1ET122, 1ET43, 1ET52
OK Cancel

Match Genes Linked to Phenotype

I	Match Genes Linked to Phenotypes
	Global Developmental Delay Genes Match
	True NPM1
	True RAC1
	False ?
	False ?
	False ?
	True FANCG
	False ?
	False ?
	True SET
	True PTEN
	True SUFU
	False ?
	False ?

CNV PhoRank Gene Ranking

	Globa	l Development	tal Delay PhoF	Rank	
Sum of Scores	Max Score	Gene Name	Gene Rank	Gene Score	Paths
1	1	NPM1	1	0.0512553	NPM1 / HP:0
1	1	RAC1	1	0.0512553	RAC1 / HP:0
0.632099	0.632099	ADAM32	0.632099	0.000453124	ADAM32 / G
0.501235	0.501235	LRRC69	0.501235	0.000135725	LRRC69 / GO
0.639506	0.639506	PTK2	0.639506	0.000474464	PTK2 / GO:00
1	1	FANCG	1	0.0512553	FANCG / HP:
1.2642	0.632099	CCDC107,SIT1	0.632099,0.63	0.000453124,	CCDC107 / G
0.62716	0.62716	CBWD5	0.62716	0.000405753	CBWD5 / GO
1.84691	1	SET, DYNC2I2	1,0.846914	0.0512553,0.0	SET / HP:000
1	1	PTEN	1	0.0512553	PTEN / HP:0
1	1	SUFU	1	0.0512553	SUFU / HP:0
0.590123	0.590123	SPTY2D1OS	0.590123	0.000252965	SPTY2D1OS /
0.622222	0.622222	SELENOH	0.622222	0.000378687	SELENOH /

- Match Genes Linked to Phenotypeでは、CNVとオーバーラップする遺伝子に対して、入力した表現型 オントロジーとの関連を、TRUEとFALSEの2値で判別したアノテーションを、CNVテーブルに付加
- CNV PhoRank Gene Rankingでは、遺伝子ごとの表現型との関連の強さをスコア化し、ランク付けしたデ ータをCNVテーブルに付加

ACMG & ClinGenガイドライン

- ACMGとClinGenのガイドラインに基づいた、生殖 細胞系列CNVの評価用ツール
- CNVごとの病原性評価(Pathogenic, Benignなど)を自動で実行し、評価結果を CNVテーブルにアノテーション付け
- ダッシュボード画面で、評価の手動での調整や、レポート作成も可能
- 使用するには、別途VSClinicalライセンスが必要

C Anterican Callege of Medical Generatics and Generatics

Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)

Erin Rooney Riggs, MS, CGC¹, Erica F. Andersen, PhD^{2,3}, Athena M. Cherry, PhD⁴, Sibel Kantarci, PhD⁵, Hutton Kearney, PhD⁶, Ankita Patel, PhD⁷, Gordana Raca, MD, PhD⁶, Deborah I. Ritter, PhD⁹, Sarah T. South, PhD¹⁰, Erik C. Thoriand, PhD⁶, Daniel Pineda-Alvarez, MD¹¹, Swaroop Aradhya, PhD^{4,11} and Christa Lese Martin, PhD¹

Discharem This technical senderd is designed perturally as an elucational resource for clinical laboratory geneticutes to help them provide quality distribution of the entropy of the ent

Purpose: Copy-number analysis to detect discase-causing losses and gains across the genore is recommended for the evaluation of individuals with neurodivelopmental disorders and/or multiple coopenital amountles, as well as for fetases with duracound abnormalities. In the decade that this analysis has been in widepread disord use, tremendous strikes have been rude in understanding the effects of copy-number variants (CNN4) in both affected individuals and the general population. However, contizated broad implementation of array and next-generation sequencing-based technologies will expand the types of CNN5 encountered in the clinical setting, as well as our understanding of their impact on human health.

Methods: To assist clinical laboratories in the classification and reporting of CNVs, interspective of the technology used to identify them, the American College of Medical Genetics and Genomics has developed the following professional standards in collaboration with the National Institutes of Health (Niki)-funded Clinical Genome Resource (CliniCon) project.

Results: This update introduce a quantitative, evidence-based scoring framework encourages the implementation of the flowtier dissofication system widely used in sequence variant classification and recommends "uncoupling" the evidencebased classification of a variant from its potential implications for a particular individual.

Conclusion: These professional standards will guide the evaluation of constitutional CNVs and encourage consistency and transparency across clinical laboratories.

Genetics in Modicine (2020) 22:245-257; https://doi.org/10.1038/s41436-019-0686-8

Keywords: copy-number variant; interpretation; classification; CNV; acoring metric

INTRODUCTION

Genome-wide assessment of copy-number variants (CNVs), including losses (deletions) and gains (duplications and triplications), is recommended as a first-tier approach for the postnatal evaluation of individuals with intellectual disability, developmental delay, autism spectrum disorder, and/or multiple

³Autim & Developmental Medicine Institute, Gelargue, Durrille, DJ, UNA, "ARUP Laboratorias, Salt Labor Chy, UT, USA, "Department of Pathology, Unitersity of Ultah, Salt Labor Chy, UT, USA, "Searcher University Scholar on Salt Salting, Sanzieri, CA, USA, "David Diagnostics Network Institute, San Juan Capitrano, TA, Aliski, "Ganeratica Laboratory," Department of Laboratory Mediers and Pathology, Nayo Chine, Ecolomie, NNA, UNA, "Institute, Sanzieri, USA, "David Laboratory, Chinese, Children's Capitrano, CA, USA, "Construction, CA, USA, "Chinese, Sanzieri, UT, USA," "Statement of Pathology, Nayo Chinese, Laboratory, ND, USA, "David Tabaratica Salting, Can Anglin, CA, USA, CA, USA, "Construction, CA, USA, CA, USA, Consequences and Children, Edge Chinese, Can Anglin, CA, USA, "Consequences and Chinese and Chinese, Can Anglin, CA, USA, Consequences and Children, The Capitrano, TA, USA, "Consequences and Chinese and Chi

The Board of Directors of far American College of Medical Generics and Generics approved this technical standard on 28 September 2016 Solvatard 16 October 2016, accepted 18 October 2019 Published collours & Normadine 2019.

GENETICS in MEDICINE | Volume 22 | Number 2 | February 2020

245

Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). *Genet Med.* 2020;22(2):245-257. doi:10.1038/s41436-019-0686-8 https://clinicalgenome.org/

ACMG & ClinGenガイドライン

評価基準

- ✓ CNVがオーバーラップしている遺伝子 上の領域
- ✓ オーバーラップしている遺伝子数
- ✓ オーバーラップしている遺伝子の用量
 感受性(ハプロ不全など)
- ✓ 既知の疾患と遺伝子の関連情報、 CNVの遺伝様式

ACMG & ClinGenガイドライン

■ CNVテーブルにアノテーション付けを行った場合

ACMG Sample CNV Classifier for NA24385-TwistWE_v1-200826_A00726_0168_AHNKJCDRXX											
Gene List	Critical Gene List	Scored Gene	Scored Gene Transcript	Scored Gene Impact Score	Additional Score	Total Score	Classification	Criteria			
IKBKG	IKBKG	IKBKG	NM_003639.4	0.9	0	0.9	Likely Pathogenic	2E:0.9 Both b			
F8	F8	F8	NM_000132.4	-0.6	0	-0.6	VUS	2B:0 The cnv			
F8,H2AB1	F8	F8	NM_000132.4	0	0	0	VUS	2B:0 The cnv			
F8	F8	F8	NM_000132.4	-0.6	0	-0.6	VUS	2B:0 The cnv			
TMLHE	?	?	?	?	-1	-1	Benign	1A:0 The CN			

□ バリアントダッシュボードで評価を行った場合

Scoring (Genes (1)	Previous CNVs (0)	Annotations (2)
l: Gene	SCN: GR Type: He s (1): CA	Ch 37 Xp11.4 (X:41712: t Deletion (113bp) SK	368-41712480)×1
Scored Gene: CASK NM_003688.3		Impact: Proteir Delete ex	n Truncation
Classification Likely Patho	: ogenic (+(Scored C 0.90) 1A+0 3	riteria: A+0 <mark>2E+0.90</mark>
CNV Summa This variant r exon 2 of CA	ry: esults in an SK, a gene	out-of-frame deletion of the that has been classifie More.	genomic region encompassing
Reporting	Genes:		
C Releva Inherita Diso	iene: CA ance: Re ance: X-I rder:	SK Ex. 2 Deletion ason for Referral ♥ inked Dominant	
Dos	age: Su (Cl	ficient evidence for dosa inGen Score 3)	ge pathogenicity
Gene Role in	Disease a	nd Evidence of Haploins	ufficiency:

score of 3, indicating sufficient evidence for More ...

- CNVテーブル上の全CNVには、評価結果の各種 データがアノテーションとして追加される
- バリアントダッシュボードでは、評価結果を手動で 調整することや、評価に関する説明や根拠など、 詳細情報を確認することが可能

フィルタリングとアノテーションの確認

フィルタリングワークフロー				CNVテーブル											
Ļ							Ļ								
🍸 Filter Coverage 🗙 🍸 Filte 🗙	+	/ E ONV: 1 × +													
CNVs ~		CNVs	~ 🖽	<u>ه</u> ۹	0 🗔 🛛	Gene	Rank > 0.8: NA24385	i-TwistWE_v1-2	200826_A00726_0	168_AHNKJCDR	≪~ ∎				
🗹 🖬 Filter CNVs 🛛 🖓	% 1,553		CNV Info				NA	24385-TwistWi	E v1-200826 A0	00726 0168 AHN	NKJCDRXX			ACMG San	nple CNV Classifier for
CNV State (Current) is (Deletion, Du	< □	^ Re	gion Type	# Targets	Span C	NV State	Flags Avg Target	Mean Depth	Avg Z Score	Avg Ratio K	aryotype	GC Content	p-value	Gene List	Critical Gene List
	1,277	X:154558532-15456	559 Loss	; 2	2028 Het	Deletion	?	18.5663	-2.91302	0.418553	?	0.643491	0.00014927625263663	IKBKG	IKBKG
Flags (Current) is missing	4 -														
Deletion Contains Heterozygous Varian	ts 0														
Extreme GC Content	56														
High Controls Variation	736														
Insufficient Ratio	166														
Low Controls Depth	432														
Low Z Score	723	<													
Within Regional IQR	597	CNV: 1 × +													
Missing	186	CNVs	~ 🖽	ା ⊗ା ⊗୍	O, 🗔 🛛	Gene	Rank > 0.8: NA24385	i-TwistWE_v1-2	200826_A00726_0	168_AHNKJODR	≪▼ ∎				
	186	X:154558532-154560	59 (2 Kbp)												
		Region: <u>×154558532-18</u>	<u>4560559</u>												
	195	Overlanning Gener	PofSog Go	nos 109 2020	1120 v2 NCF	31									
	120	Gene Names	Reiseq Ge	IKBKG	1120 12, 1101										
Classification is (Likely Pathogenic,	24	Aliases		AMCBX		P-3 FIP3 Fip3	3p IKK-gamma IKK	AP1 IKKG IMF	033 IP IP1 IP2	IPD2 NEMO ZO	C2HC9				
Benign	04	# Genes		1	.,		, <u>9</u>			,					
Likely Benign		Transcript Name (Cli	nically Releva	nt) NM 003	3639.4										
Likely Pathogenic		Overlapping Exons (0	linically Relev	(ant) 4-5									アノテー	・ション計	(細)
Pathogenic	0	% CDS Covered (Cli	ically Relevar	1) 21 5873	1							-			
VUS	90	% Covered (Clinical)		12 9330	, 1								テーダ		
Missing	0	HGVS c. (Clinically B		NM 003	3639.4°c 400	518+1909del									
	1	HGVS p. (Clinically R		NP 003	8630 1 n 0124	1/fe*35									
Gene Rank > 0.8	* □	Sequence Ontology (Clinically Rele	want) frameek	variant	100 00									
	1	ocquence ontology (onnically rele	namest	int_variant										

■ CNVテーブルにて、各データ(Flag, P-value, アノテーションなど)に基づきフィルタリングを実行

■ 各CNVに付加されたアノテーションは、詳細画面から全アノテーションの詳細データを確認することも可能

お問い合わせ先:フィルジェン株式会社 TEL: 052-624-4388 (9:00~18:00) FAX: 052-624-4389 E-mail: biosupport@filgen.jp