

NGSデータを用いたコピー数多型 (CNV)解析

フィルジェン株式会社 バイオサイエンス部 (biosupport@filgen.jp) ゲノムワイドのCNV解析には、従来からマイクロ アレイが使用されているが、基本的にサイズの大 きい領域の検出に制限される。

はじめに

- SNPや小サイズのInsertion/Deletionのよう な、ゲノム上の変異の検出については、すでに次 世代シークエンサーを使用した疾患遺伝子パネ ル解析、全エクソーム解析や全ゲノム解析が主 流になっている。
- Golden Helix社VarSeq[®]のCNV Caller機 能では、このような次世代シークエンサーの変異 解析パイプラインのデータをそのまま用いて、1エ クソンの小サイズから、1遺伝子あるいは染色体 全体のような大サイズのCNVを検出することがで きる。

After duplication

Duplicated area

duplication

Golden Helix ソフトウェア製品ラインナップ

SNP & Variation Suite

- GWAS & SNP Analysis
- Large-N DNA-Seq Analysis
- Genomic Prediction
- Copy Number Analysis
- RNA-Seq Analysis

High-throughput NGS Testing

VSWarehouse

- Fully Integrated with VarSeq Workflows
- Scalable Technology
- Organize Samples into Projects
- Centralized Clinical Report Hosting
- Create Variant Assessment Catalogs

- キュレーションされた様々なデータリソースを使用し、変異 データへアノテーション付けを実行
 - dbSNP

VarSeq®

- RefSeq Genes
- COSMIC
- 1000 Genome
- NHLBI 6500 Exomes
- ExAC Variant
- gnomAD Exomes

- SIFT and PolyPhen
- dbNSFP Functional Predictions
- ClinVar
- CIVic
- ICGC Simple Somatic Mutation
- •各種遺伝子パネルのターゲットデータ
 - …など
- VCFファイルに含まれる変異データから、任意の検索条 件でデータのフィルタリングを行うワークフローを作成
- HGVDなどの独自定義ファイルもアノテーションデータとして利用可能
- カバレッジ計算やトリオ解析、表現型情報に基づく遺伝
 子ランキングなどの解析アルゴリズムを搭載
- ゲノムブラウザーを搭載し、BAMファイルデータや各種アノ テーションデータをグラフ表示
- 無償提供のビューワーソフトウェアが利用でき、解析結果 を容易にシェアすることが可能 4

CNV Caller

- VarSeq[®]専用の、機能追加用の有償アドオン
- 遺伝子パネルや全エクソーム、全ゲノムシークエンスデータ を使用した、CNV領域の検出
- 検出されたCNVは、ゲノムブラウザーでグラフィカルに表示 が可能
- LoH (Loss of Heterozygosity) 検出も可能

解析使用データ

- 次世代シークエンサーの変異解析用パイプラインで出力された、変異データ(VCFファイル) とリード配列のアライメントデータ(BAMファイル)を使用
- 遺伝子パネルやエクソーム解析の場合は、ゲノム上のターゲットキャプチャー領域データ(BED ファイル)が必要

CNV解析ワークフロー

.

Sample Summary Table

カバレッジ計算

- リードアライメントデータとターゲット領域データを使用し、
 各ターゲット領域ごとのカバレッジを計算
- 全ゲノムシークエンスの場合は、ゲノム全体を一定の間隔 で分割し、分割された各領域ごとのカバレッジを計算する

Current Sample Read Alignment: RD-NGSPROGENITYCANCER-SAMPLE13

CNV検出とプロット

- カバレッジデータのサンプル間の正規化を行った後、各サンプルごとに、リファレンスサンプルセットとカバレッジを比較して、各ターゲット領域ごとのRatioとZ-scoreを計算する
 - Z-Score: サンプルカバレッジが、リファレンスサンプルの平均カバレ ッジから、標準偏差の何倍離れているか
 - Ratio: サンプルカバレッジと、リファレンスサンプルの平均カバレッジ との比率
- 同時にDeletionやDuplicationなどの、ゲノム上でコピー 数異常が検出された領域を示すデータ(CNV State) が出力される
- 計算されたRatioやZ score、CNV Stateなどのデータは、そのままゲノムブラウザーにプロットすることができる

サンプル条件

カバレッジ

▶ 遺伝子パネル、エクソーム解析の場合は、100 x が必要

• サンプル

- リファレンスサンプルセットに、最低10サンプル、できれば30サンプル以上が 望ましい
- ▶ すべて同一の解析プラットフォーム(パネルの種類、サンプル調整の条件、 シークエンスデータ量など)である
- ▶ 性染色体の解析を行う場合は、サンプルの性別も合わせる必要がある

計算用アルゴリズム

● カバレッジ計算

- Fargeted Region Coverage (遺伝子パネル、エクソーム解析用)
 - Bedファイルなどで指定されたターゲット領域ごとにカバレッジを計算
- Binned Region Coverage (全ゲノム解析用)
 - ゲノム全体を任意の間隔で分割した領域ごとにカバレッジを計算

● CNV検出

- CNV Caller on Target Regions (遺伝子パネル、エクソーム解析用)
 - Targeted Region Coverageで計算されたカバレッジデータを使用した CNV検出
- > CNV Caller on Binned Regions (全ゲノム解析用)
 - Binned Region Coverageで計算されたカバレッジデータを使用した CNV検出

ビジュアライゼーション

- ゲノムブラウザー
 - 検出されたCNV State、さらに各領域ごとのZ-ScoreやRatioをプロットすることで、ゲノム上のコピー数異常領域をビジュアル表示できる
 - ▶ リードアライメントデータや、各種データリソースの情報も、プロットが可能

遺伝子パネル: Illumina TruSight Cancer panel

解析サンプル: **腫瘍細胞(48サンプル)**

48サンプルの腫瘍細胞を、Illumina社のがん遺伝子パネルとシークエンサーを用いてターゲットシークエンスを行い、得られた48サンプル分のFASTQファイルから、アライメントデータのBAMファイルと、変異コールデータのVCFファイルを、それぞれのサンプルに対して取得した。

サンプルデータのインポート

🤨 Import Variants Wizard		- 0 X
Import Variant	tSources	
Define Input Scan Input Scan Input Change Options Review Select one or more variant files to import.	Select Files: CANCER-SAMPLE1.vcf.gz CANCER-SAMPLE3.vcf.gz CANCER-	Add Files <u>Remove</u> Add Eolder Remove All
<u>H</u> elp	< Back Next >	<u>C</u> ancel

lect each sample's co	rresponding BAM file by selecting it from the drop down menu.
:/VarSeq-SampleCNV	Data/BAMs Found 48 BAM files
Sample Name	File Name
ANCER-SAMPLE1	D:/VarSeq-SampleCNVData/BAMs/CANCER-SAMPLE1.bam
ANCER-SAMPLE2	D:/VarSeq-SampleCNVData/BAMs/CANCER-SAMPLE2.bam
ANCER-SAMPLE3	D:/VarSeq-SampleCNVData/BAMs/CANCER-SAMPLE3.bam
ANCER-SAMPLE4	D:/VarSeq-SampleCNVData/BAMs/CANCER-SAMPLE4.bam
ANCER-SAMPLE5	D:/VarSeq-SampleCNVData/BAMs/CANCER-SAMPLE5.bam
ANCER-SAMPLES	D://arSeo-SampleCNVData/BAMs/CANCER-SAMPLE6.ham

各サンプルのVCFファイルと同時に、 BAMファイルもインポートを行う

サンプルデータのインポート

1	/ariant Info	1	Cancer Sample 7				
Chr:Pos	Ref/Alt	Identifier	Read Depth (DP)	Variant Allele Freq	Allelic Depths (AD)		
17:41244000	T/C	rs16942	193	0.458333	104,88		
17:41244301	T/C	?	?	?	?,?		
17:41244435	T/C	rs16941	187	0.526882	88,98		
17:41244524	C/T	rs1800704	?	?	?,?		
17:41244815	T/C	rs1800740	?	?	?,?		
17:41244936	G/A	rs799917	211	0.438095	118,92		
17:41245090	T/C	rs56082113	?	?	?,?		
17:41245237	A/G	rs16940	242	0.39834	145,96		
17:41245466	G/A	rs1799949	227	0.537445	105,122		
17:41245471	C/T	rs4986850	229	0.532751	107,122		
17:41246481	T/C	rs1799950	?	?	?,?		
17:41246567	T/C	rs1800063	?	?	?,?		
17:56772341	A/G	rs45511291	?	?	?,?		
17:56780540	G/T	rs193023469	?	?	?,?		
17:56787304	G/A	rs147241704	?	?	?,?		
17:56798128	A/G	rs28363317	?	?	?,?		
17:59760996	A/G	rs4986763	188	0.484043	97,91		
17:59763347	A/G	rs4986764	195	0.471795	103,92		
17:59763465	T/C	rs4986765	152	0.536913	69,80		

 インポートした変異データ(VCFファイ ル)と、リードアライメントデータ(BAM ファイル)を表示

✓ 変異データ

✓ アライメントデータ

ターゲット領域データの取得

Illumina社、Thermo Fisher Scientific社の遺伝子パネル、エクソーム解析用のターゲット領域データは、VarSeq®のダウンロードツールより、ダウンロードが可能

ターゲット領域データの取得

🚫 Convert Source Wizar	d	
Convert Data S	Source	
① Define Innut	Select Files:	
② Scan Input	SureSelect_Human_All_Exon_V6.bed	Add
 Change Options 		Remove
④ Convert		
Select one or more files to Convert.		
Files must be of the same type to be converted together.		
Advanced Options		
Help	< Back Next >	Cancel

 ダウンロードツールにないターゲット領域データを使用する場合は、BEDファイルを インポートして使用する カバレッジデータの計算

カバレッジデータの計算

Coverage Regions	• 🗗 💿	8 D					
Coverage Region Info		Coverage	Statistics (Cancer Pane	l for Cancer	Sample 1	
Region	Mean Depth	Min Depth	Max Depth	% 1×	% 20×	% 100×	% 500×
1:45794959-45795129	468.094	331	522	100	100	100	28.655
1:45796169-45796249	441.012	397	474	100	100	100	0
1:45796835-45797026	722.182	621	769	100	100	100	100
1:45797073-45797248	690.602	597	761	100	100	100	100
1:45797314-45797541	659.588	566	711	100	100	100	100
1:45797676-45797778	710.757	633	809	100	100	100	100
1:45797819-45798002	862.989	811	916	100	100	100	100
1:45798044-45798180	747.438	687	829	100	100	100	100
1:45798227-45798379	703.353	653	746	100	100	100	100
1:45798416-45798526	662.928	635	697	100	100	100	100
1:45798571-45798651	701.309	677	727	100	100	100	100
1:45798750-45798862	683.195	651	716	100	100	100	100
1:45798938-45799016	756.43	712	790	100	100	100	100
1:45799066-45799295	722.583	563	791	100	100	100	100
1:45800044-45800203	388.581	300	455	100	100	100	0
1:45805872-45805946	556.973	521	588	100	100	100	100
2:47596626-47596740	208.47	157	234	100	100	100	0
2:47600583-47600729	456.068	372	508	100	100	100	6.80272
2:47600928-47601207	550.189	379	635	100	100	100	82.8571
2:47602354-47602458	455.657	396	517	100	100	100	16.1905
2:47604134-47604236	453.165	382	510	100	100	100	13.5922
2:47606073-47606213	410.319	327	472	100	100	100	0
2:47606889-47607128	514.317	286	637	100	100	100	62.5
2:47612286-47612369	513.036	464	549	100	100	100	67.8571
2:47613692-47613772	551.58	433	674	100	100	100	72.8395

 パネルに含まれている、各ターゲット領域ごとのカバレッジデータがテーブル形式で 出力される

CNVの検出

CNV出力データ

• Sample Table

▶ 各サンプルごとのQCチェックデータ(平均カバレッジや低カバレッジフラグなど)

Sample Info			Coverage Statistics Can			Copy Num	oer Variants			
Samples	Sample Mean Depth	SampleMeanForwardDepth	Sample Mean Reverse Depth	Sample % 1x	Sample % 20x	Sample % 100x	Sample % 500×	Sample Flags	Inferred Gender	# CNV Events
Cancer Sample 25	144.426	74.6347	69.791	100	99.869	81.5915	0	?	?	0
Cancer Sample 26	681.601	353.186	328.415	100	100	99.7713	79.765	?	?	0
Cancer Sample 27	556.331	288.364	267.966	100	100	99.8437	64.2316	?	?	0
Cancer Sample 28	586.246	302.465	283.781	100	100	99.7656	68.7547	?	?	2
Cancer Sample 29	183.889	95.2023	88.6863	100	100	97.2301	0	?	?	1
Cancer Sample 30	147.068	75.6568	71.4111	100	99.9471	95.23	0	?	?	2
Cancer Sample 31	552.113	281.229	270.884	100	100	99.7501	62.769	?	?	0
Cancer Sample 32	570.24	290.126	280.115	100	100	99.6581	65.1278	?	?	0
Cancer Sample 33	401.821	206.623	195.198	100	99.8983	99.3529	23.0273	?	?	0
Cancer Sample 34	19.4118	9.82568	9.58581	99.9837	45.5645	0	0	High IQR,Low Sample Mean Depth	?	25
Cancer Sample 35	172.921	89.1312	83.7899	100	100	98.0066	0	?	?	1
Cancer Sample 36	682.728	350.094	332.634	100	100	99.8046	82.7505	?	?	0
Cancer Sample 37	771.953	395.482	376.471	100	100	99.7949	89.547	?	?	1
Cancer Sample 38	296.208	150.766	145.442	100	99.9821	99.3513	0	?	?	0
Cancer Sample 39	617.615	316.354	301.261	100	100	99.6614	73.9583	?	?	1
Cancer Sample 40	475.563	241.922	233.641	100	99.8763	99.1877	42.1924	?	?	2
Cancer Sample 41	28.3141	14.3683	13.9457	99.9943	76.2877	0	0	High IQR,Low Sample Mean Depth	?	14
Cancer Sample 42	412.22	212.505	199.715	100	100	99.5124	24.4785	?	?	1
Cancer Sample 43	619.86	321.093	298.767	100	100	99.8185	73.4291	?	?	1
Cancer Sample 44	393.09	203.393	189.697	100	100	99.7306	16.6892	?	?	2
Cancer Sample 45	328.852	169.296	159.556	100	100	99.5393	0.175813	?	?	2

• Coverage Region Table

 各ターゲット領域ごとのコピー数状態(Diploid、Deletion、Duplicationなど)と Ratio、Z-scoreなど

CNV出力データ

Coverage Region Info	Coverage Statistics Cancer Panel for Cancer Sample 1						Target Copy Number State for Cancer Sample				mple 1	
Region	Mean Depth	Min Depth	Max Depth	% 1×	% 20×	% 100×	% 500×	CNV State	Flags	Z Score	Ratio	Variants Considered
1:45798416-45798526	662.928	635	697	100	100	100	100	Diploid	?	-0.0328397	0.99772	0
1:45798571-45798651	701.309	677	727	100	100	100	100	Diploid	?	0.712468	1.05367	0
1:45798750-45798862	683.195	651	716	100	100	100	100	Diploid	?	1.16314	1.10108	0
1:45798938-45799016	756.43	712	790	100	100	100	100	Diploid	?	1.06012	1.10258	0
1:45799066-45799295	722.583	563	791	100	100	100	100	Diploid	?	0.609163	1.05001	0
1:45800044-45800203	388.581	300	455	100	100	100	0	Diploid	?	-0.529925	0.957499	0
1:45805872-45805946	556.973	521	588	100	100	100	100	Diploid	?	0.392859	1.04146	0
2:47596626-47596740	208.47	157	234	100	100	100	0	Het Deletion	?	-2.88048	0.528975	0
2:47600583-47600729	456.068	372	508	100	100	100	6.80272	Diploid	?	0.238906	1.03	0
2:47600928-47601207	550.189	379	635	100	100	100	82.8571	Diploid	?	0.500308	1.04318	1
2:47602354-47602458	455.657	396	517	100	100	100	16.1905	Diploid	?	-0.389887	0.957959	0
2:47604134-47604236	453.165	382	510	100	100	100	13.5922	Diploid	?	-0.343476	0.970031	0
2:47606073-47606213	410.319	327	472	100	100	100	0	Diploid	?	-0.658619	0.926245	0
2:47606889-47607128	514.317	286	637	100	100	100	62.5	Diploid	?	0.614464	1.05725	0
2:47612286-47612369	513.036	464	549	100	100	100	67.8571	Diploid	?	-0.10762	0.988171	0
2:47613692-47613772	551.58	433	674	100	100	100	72.8395	Diploid	?	0.212828	1.02333	0

Filgen

biosciences & nanosciences

CNV出力データ

• CNVs Table

ゲノム全体のコピー数異常領域とその状態(Diploid、Deletion、Duplicationなど)、
 さらにP-valueなど

CNV In	fo		Cancer Sample 3							
Region	# Targets	Span	ONV State	Flags	Avg Target Mean Depth	Avg Z Score	Ave Ratio	Supporting LOH Variants	p-value	
7:6013011-6018347	3	5337	Het Deletion	High Controls Variation,Low Z Score	52.8089	-1.62329	0.380012	0	0.0329238548874855	
10:43606636-43609143	4	2508	Duplicate	Within Regional IQR	153.515	2.57413	1.23655	0	0.000513269216753542	
11:108213930-108236255	7	22326	Het Deletion	?	75.8131	-3.97302	0.504004	0	8.05861182905793e-14	
17:7579293-7579932	3	640	Duplicate	Within Regional IQR	153.536	2.51492	1.2535	0	0.00327462935820222	
17:29422309-29422407	1	99	Duplicate	?	124.061	3.13198	1.40498	0	0.0324721410870552	
17:29557841-29559227	2	1387	Duplicate	?	152.233	2.94003	1.42884	0	0.00469905091449618	

● 出力テーブルの各データを、ゲノムブラウザーにプロットする

ゲノムブラウザーへのプロット

 Ratioなどの数値データを、変化が分かりやすいように線でつなげたり、各デ ータリソースのSNVやCNVデータを、プロットに加えることができる

お問い合わせ先:フィルジェン株式会社 TEL: 052-624-4388 (9:00~17:00) FAX: 052-624-4389 E-mail: biosupport@filgen.jp